AIModels.AIClasses module¶
Classes for the AI project
Classes¶
- Field:
Class for fields
- EarlyStopping:
Class for early stopping
- TimeSeriesDataset:
Class for time series dataset
- class AIModels.AIClasses.Field(name, levels, area, mr, dstart='1/1/1940', dtend='12/31/2022')[source]¶
Bases:
object
Class for fields
- Parameters:
name (string) -- Name of the field
levels (string) -- Level of the field
area (string) -- Area to be analyzed, possible values are
'TROPIC': Tropics
'GLOBAL': Global
'PACTROPIC': Pacific Tropics
'WORLD': World
'EUROPE': Europe
'NORTH_AMERICA': North America
'NH-ML': Northern Hemisphere Mid-Latitudes
mr (float) -- Number of EOF retained
dstart (string) -- Start date for field
dtend (string) -- End date for field
- Variables:
name (string) -- Name of the field
levels (string) -- Level of the field
area (string) -- Area of the field
mr (float) -- Number of EOF retained
dstart (string) -- Start date for field
dtend (string) -- End date for field
- class AIModels.AIClasses.EarlyStopping(patience=5, verbose=False, delta=0)[source]¶
Bases:
object
Class for early stopping
- Parameters:
patience (int) -- Number of epochs to wait before stopping
verbose (boolean) -- If True, print the epoch when stopping
delta (float) -- Minimum change in loss to be considered an improvement
- Variables:
patience (int) -- Number of epochs to wait before stopping
verbose (boolean) -- If True, print the epoch when stopping
delta (float) -- Minimum change in loss to be considered an improvement
counter (int) -- Number of epochs since last improvement
best_score (float) -- Best loss score
early_stop (boolean) -- If True, stop the training
- class AIModels.AIClasses.TimeSeriesDataset(datasrc, datatgt, TIN, MIN, T, K, time_features=None)[source]¶
Bases:
Dataset
Class for time series dataset. Includes time feature for transformers
- Parameters:
datasrc (numpy array) -- Source data
datatgt (numpy array) -- Target data
TIN (int) -- Input time steps
MIN (int) -- Input variables size
T (int) -- Predictions time steps
K (int) -- Output variables size
time_features (numpy array (optional)) -- If not None contain Time Features
shift -- Overlap between source and target, for trasnformers overlap = 0 for LSTM overlap should be TIN-T
- Variables:
datasrc (numpy array) -- Source data
datatgt (numpy array) -- Target data
time_features (numpy array) -- Time features
TIN (int) -- Input time steps
MIN (int) -- Input variables
T (int) -- Output time steps
K (int) -- Output variables