AIModels package¶
Submodules¶
- AIModels.AIClasses module
- AIModels.AIutil module
- Utility Treatment Routines for ML Predicting models
func_name()
copy_dict()
get_arealat_arealon()
select_field()
select_field_key()
select_field_eof()
select_area()
make_matrix()
make_eof()
make_field()
make_field_V5()
make_field_HAD()
normalize_training_data()
make_data()
make_features()
make_data_base()
init_weights()
count_parameters()
epoch_time()
create_time_features()
rescale()
matrix_rank_light()
CPRSS()
transform_strings()
make_fcst_array()
eof_to_grid()
advance_months()
project_dyn()
make_dyn_verification_new()
compute_increments()
cumsum_with_init()
select_fcst()
variance_features()
create_subdirectory()
eof_to_grid_new()
get_common_dates()
- AIModels.AutoEncoder module
- AIModels.ClimFormer module
- AIModels.ClimLSTM module
- AIModels.LocalInformer module
- AIModels.ModelTraining module
- AIModels.UtilPlot module
- Auxiliary Plotting routines
Single_Forecast_plots()
many_plots()
Forecast_plots()
Three_Forecast_plots()
select_months()
plot_skill()
extract_and_merge_csv()
write_skill_to_csv()
plot_csv()
boxplot()
write_var_excel()
Two_Forecast_plots()
write_var_table()
define_defaults_values()
get_common_dates()
calculate_significance()
Module contents¶
AIModels is a Python package for the designing ML networks of atmospheric and ocean data. It is based on the xarray package.
It uses xarray as a basic data structure.
AIModels contains several modules with classes and utility routines The plotting modules are based on matplotlib and cartopy. The computation modules are based on numpy and scipy.
- ClimFormer :
Class for ClimFormer network
- ClimLSTM :
Class for ClimLSTM network
- LocalInformer :
Class for LocalInformer network, a modified version of Informer for time series from HuggingFace
- ModelTraining :
Class for training, validate and inference the models
- UtilPlot :
Routines for plotting and visualization of the data
- AIutil :
Utilities for the rest of the modules
Version 2.1