klus.observables module

klus.observables.identity(x)[source]

Identity function.

class klus.observables.monomials(p)[source]

Bases: object

Computation of monomials in d dimensions.

diff(x)[source]

Compute partial derivatives for all data points in x.

ddiff(x)[source]

Compute second order derivatives for all data points in x.

display(alpha, d, name=None, eps=1e-06)[source]

Display the polynomial with coefficients alpha.

class klus.observables.indicators(Omega)[source]

Bases: object

Indicator functions for box discretization Omega.

class klus.observables.gaussians(Omega, sigma=1)[source]

Bases: object

Gaussians whose centers are the centers of the box discretization Omega.

sigma: width of Gaussians

diff(x)[source]

Compute partial derivatives for all data points in x.

ddiff(x)[source]

Compute second order derivatives for all data points in x.

klus.observables.nchoosek(n, k)[source]

Computes binomial coefficients.

klus.observables.nextMonomialPowers(x)[source]

Returns powers for the next monomial. Implementation based on John Burkardt's MONOMIAL toolbox, see http://people.sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html.

klus.observables.allMonomialPowers(d, p)[source]

All monomials in d dimensions of order up to p.